6 research outputs found

    Scalar field "mini--MACHOs": a new explanation for galactic dark matter

    Full text link
    We examine the possibility that galactic halos are collisionless ensembles of scalar field ``massive compact halo objects'' (MACHOs). Using mass constraints from MACHO microlensing and from theoretical arguments on halos made up of massive black holes, as well as demanding also that scalar MACHO ensambles of all scales do not exhibit gravothermal instability (as required by consistency with observations of LSB galaxies), we obtain the range: m\alt 10^{-7} M_\odot or 30 M_\odot\alt m\alt 100 M_\odot. The rather narrow mass range of large MACHOs seems to indicate that the ensambles we are suggesting should be probably made up of scalar MACHOs in the low mass range (``mini--MACHOs''). The proposed model allows one to consider a non--baryonic and non--thermal fundamental nature of dark matter, while at the same time keeping the same phenomenology of the CDM paradigm.Comment: 5 pages, 1 eps figure. RevTex 4 style. To appear in Physical Review

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Statistical physics: an introductory course

    No full text

    Current World Literature

    No full text
    corecore